L 217 ]

XV. Of the construction of Logarithmic Tables. By Thomas
Knight, Esq. Communicated by Taylor Combe, Esq. Sec.

R.S.
Read February 2%, 1817.

1. I HAVE endeavoured, in this short Paper, to give a simple
and connected theory of the construction of logarithms, which
I think has not hitherto been done.

Pror. I
To find the Logarithm of 1 4 2.*
It is not difficult to see that we may assume
L(1+4 ) ="'Ax 4 "A2* + ""A2® + ""Ax* + &c.,whence
L(l + y) =1Ay + IIAyﬁ + IllAy? + IIIIAy-G + &c.’ and
L {(1 +2z) (1 +y)} =L(142+4y4=y), or putting 14 o=,
=L{ 1 (a4 m) } =A@+ )+ A@my)+ A my) e

If we substitute these three expansions in the equation

L(142)+L+y)=L{(1+ ) +)}
which expresses the nature of logarithms, and compare the
coefficients of the first power of y, we find

'A ='Ax 4 2"Anz + " Ana® + 4" Ana® 4- &e.
or IA 1 oAz 4 g A2 4(""Aw3 + &ec.

lAl + 2!IA| + 3"'AI
whence, by companng the coefficients of the powers of «,
'A='A, " A4'A=0, §""A+2"A=0, 4/""A+g'"A=0, &c.; or
’ ] ! H ’
TA='A, "A=—-—§, ”'A=-—%—}-\=-;}, "”A:—-—%:—-é, &ec.
* I.ﬁnd that the method of expansion made use of in this Proposition had been
previously employed by Mr, Srence.
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218 Mr. KNIGHT on the construction

and L(14a2, -—’A{~—-—-—-+-—--———+}

As for A it may be evidently taken at pleasure; and innu-
merable systems of logarithms may be formed by assigning
different values to it, for

'AL(G1+2) 4 'AL(149) ='AL{(1 +2) (147)}
which expresses that, if every logarithm in a system be mul-
tiplied by the same constant quantity, the products will still
form a system of logarithms to the same numbers.

Cor. By an easy transformation of L(1 4 ), we get for
Brice’s logarithms, M being the modulus,

L.f-=2M {Z:Z + —;— (g—}g)a+ < (:::) +} ; and when-
ever the logarithm of a fraction is spoken of in the following
“proposition, it is supposed to be found by this series.

2. How are we to begin, in forming a table of logarithms?

DeLamere (Preface to Borpa, p. 75) says, that we should
begin at 10,000; and the same writer (Mémoires de I’Institut,
Tome cing. p. 65 ), speaking of the great French Tables, says
that the logarithms of primes under 10,000 were calculated
directly by series, and those of numbers above 10,000 by
six orders of differences. '

Now it is not easy to see, why any of the logarithms in the
lower half of the Table, except those of the numbers 2 and g,
should be computed directly ; since they may be got, each
by a single subtraction, from those in the upper half. Sup-
pose, for instance, there had been found directly the loga-
rithms of numbers from 100,000 to 200,000; those of numbers
down to 50,000 are found by merely. subtracting the loga-
rithmtof 2, successively, from those of all the even numbers ;
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beginning at the topof the Table, withL.. 1999998, L. 1999996,
- &c., and setting down the remainder for the logarithms of
the successive’ numbers below 100,000, viz. L. 99999,
L. 99998, &c. |

When we have got down to 50,000, if we were to proceed
in the same way, we should have to operate on the logarithms
thus obtained, between 100,000 and 5o,000: If, therefore,
we fear any accumulation of errors, we may (because
8x49999 = 149997) subtract the logarithm of g from
L. 149997, and from the logarithm of every third number
going downward, and set the remainders down successively
for the logarithms of numbers below 50,000. And thus we
may proceed till we get somewhat below 84,000 ; then the
logarithm of 4, will carry us down to 25,000; and the loga-
rithm of 5 to 20,000, which completes the work, those below
20,000 having been already found.

In the great French Tables, however, it has been thought
proper to calculate the logarithms of numbers under 10,000
with more decimal places than the rest. These must neces-
sarily be found independently of the others; as they form i in
reality a separate Table.

In the next proposition, is contained a general method of
finding converging series for the calculation of logarithms.
The propositions which follow this are only corollaries from
it, and give forms for interpolation ; so that every thing relat=
ing to the construction of logarithms is effected by one sim-
ple and uniform process.
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Prop. II.

8. To express a number (x) by the product of a series of fractions
converging continually towards unity.

Let n, n’, n", &c. be numbers much less than #; in the
equation ==, change @, in the second member, into @ -z,
- and multiply by such a factor as will restore the equality ;

there arises @ = (@ 4= 7) x ——; + If, in the second member

~ of this equation, we change @ into @ -~ »', in the last factor
;—-_“—';—,;, and multiply by such a fractional factor as shall again

restore the equality, we have

240 a:(x+n+n’)
&= ({L’ + n) X z+n-4n' (x+n)(:c+n')

If here, in like manner, we change @ into 47" in the last
- factor, and restore the equality as before, by annexing a new

factor, then

o a4 (m+n") (z+n+n‘+n")
x'—'. (w+n) X rrntn (a:+n+n") (@tn+2) %

2 (x+ntn)(z+ntn") (x4 +n")
(@+n)(z+n)(z+n")(z+n+n"+n")

and the same process may be repeated as long as we thmk it
necessary. Now it is plain that the last annexed factor, as
we continue these operations, must always approach nearer
to unity than that which was the last before; thus, z being

very small compared with #, —— does not much differ from

unity, and when @7’ is put for x in this fraction (#’ being

also very small compared with z) its value will be nearly

) . : x(x+n+n)
the same as before : of course the annexed factor @Il

will differ very little from unity : and it will differ from it
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much less than the preceding factor ——; for let x——”_l_—’; =1—,

zn’
1'+n’ —— ) ! ’ 1 1 .
e S 1w and w and p' being small fractions ; the new

factor (zf,;’(':'_"n) J=ime==1—(w—p) nearly: and consequently

differs less from unity than the factor which was last before.
4~ These equations, being put into logarithms, give a series
of converging expressions for the logarithm of z. 'We have

successively,
1st. L.o =L (z4n) 4L (;—%)

ed. L.o=L(a+4n)+ L(a+4n)—L(@tntn)+
L ( - (nfn)x ’). .
»mtn)rdnn)

but before we put the third equation into logarithms, it will
be better to simplify it; one of the most obvious ways of

doing which is to make n<-n'=n"; then
3d. La=L(z4n)4L(z4n")+L({ z+42n" ) —L(z4n-}n")
—L(z4-n'4n")

L (zs+ 3n"2 - (un' +2n"jx )
+ 34" f(nn' +2n"*)x |

This may be still farther simplified by making n=n', con-
sequently n’=2n, then
L.z=3sL.(z 4 n)—eL(z + 8n) 4+ L (2 + 4n)

23 4 6na - gne )
+ L(x‘ +6nx* +gncx 440’

If now we change 7 into —1, and x into z+2, we shall fall
upon the elegant formula of Mr. BorpA.*

* If any one shall attempt to calculate a Table of logarithms by means of diffe-
rences, each logarithm being got, not from the next, but from the next but one
below it, he will fall upon the series of Borpa: for A3 .L(z—1)=L. (2+2)
~3L(z+41)+3L.2=L(z—1); A% L(z—2)=L(z+1)—3L.2+3L(z—1)—L(z—2),
by adding which, A% L (z=1)+ A% L(x—z):L(g—:_-}-'_—:—;—g{—:%,) which gives the
series we are speaking of. This remark will be exemplified in one of the following
Propositions, "~
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In like manner we might investigate approximations of the

fourth and following orders: but this kind of research has

very little use, and the Proposition was inserted for a different
purpose.

5.

T=(Z—1) x —

r=(2—1) x -—;

Pror. IIL
Supposing that, in the last Proposition,n=n'=n"=&c.==—1.

It is required to find the law of the converging expressions for
L.x. |

In this case the four first transformations give

=1

—1 _ 2(z—2)
(L'---(.Z-—-l ) o X '(—;:'i—);!
a)-—-(.l‘—-l) -1 (z—1) (z—3) x(x—2)3

a—2 (#=2)* (z—1)%(z—3)
=1 (=1 (z—3) (a—1) (z—3)} ar(a::—-z)6 (x—4)
=2 X (@—2r X (a—2)@—4) " (a—1F (a—3)

which, put into logarithms, give

L

L
L

. XT= L(x—-—1)+L(x_‘)
L.

=oL(z—1) ——L(x——g).*.L(’(""“"))

(&=—1)*

. "’=3L(x‘“1)—-3L($-—2)+L(.z:-—3)+L( x(z—=2)3 )

=11 (2=3)

: ‘r=4L(x"‘1)“6L(x'—2)+4L(«'C"-%)—-L(x-—4)+L(i’(_’L‘ﬁ‘_£’i:ﬂ)

(e—=1 (2—3))°

where a coincidence may be observed between the coefficients
and those in the binomial theorem; and it is easily shown
that the same coincidence will have place, how far soever
we continue the method; or that, in general, the converging
expression will be

L. z=2L(z—1)—2200 (g2 ) + =200 (2—3) —.

a e

n(n—1 n(n—l)(n—Z)’n—-s)

2% (2—2) 1.2 % (2—4) 1.2 34
vieeno+L - ey rr—ry (a}

1.2.3

—

(a=—1) ' % (z=—3) X &c.
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For, if it be denied, let this represent a single result, to
pass on to the next, we change x into x—1, in the logarithm
of the fraction, and add a new logarithm (L) to restore the
equality : the equation will thus become

L x____i'\ __n{n—1)7 +n(n—l)(n—z)
: '—'1! 1.2 1.2.3
e ey e
n n{n——1i
» +1_) __T + 1.2
+ +1) +1)n(n—
or L. z="2L(z—1)— R (g—o) 4 LEIE1 0 g) . (L),
and, by transposition, we find
r (n+1)n (n+1n(n—1) (n—2)
rx(r—2z) 2 X (2—4) 123 4 % &c.
(L)"—'Li ng1 (n+l)n(r£:_l_2

(1—1) Poxte—y)  MP3 xac

so that the whole expression is of the same form as before,
which is therefore proved to be general.

6. Cor. 1. If in the values of z. in the last article, we put
for z, in the second z--1, in the third 142, in the fourth
29, and so on; and moreover represent the last fractions
arising after such substitution by a, &/, 2", &', &c., we get
the following set of equations

r=(I—1)xa

T4 1=sxaxa

x+2=(x+1)xfj—l-xw'xa" (b)

z + g=(r42) x ;I: :ii";)z,) x e’ x o'

e ... 0o & oL

which, from the manner of their formatzon are subject to thislaw,
that the m** fraction ( provided it is not the last) in the value
of z-n, is equal to x-n—1 divided by the product of the
first m—1 fractions in the expression of r-=n—1.

MDCCCXVIIL. Gg
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If, for brevity, we put L, L°, L/, L”, &c. for L(z—1), L.z,
L(z+41, L(z42), &c. the last equations give '
1° =L +L.z

L' =L°+4L.aJLe (¢)

L' =L' 4(L' —L°)4L.a'+L.4"
L" =L" 4 (L" —L")4(L" —2L’ 4+ L°)4-L.o"4L.2"
LIIII=LIII+(LIII—L/I)+(LIII_QLII+LI)+(L’II___3LII+3LI—LG)

+L. “"'+L L
| R (n+!),_L n+(L "....(n-l))+(L”. L (n—-l)+
Liv(i=2) ) . . . ... 4 (L") g M) g ()
__”(”—'1)("'—2 ..... (n—3)+)+L @ ..n_l_L‘“" (n41)

1.2,
These eqimtlons are subject to a law arising from that which
we noticed in (b), viz. that the mt® term ( provided it is not the
last) in the value of L' is equal to L"=1, minus the sum
of the first m—1 terms in the expression L"("=Y, By term
I here mean the whole expression included between two

brackets.
If we form Lz " generally from the last term of equa-

tion (a) we have

(n+1n (rt Dn(re—)(n—2)

” xm)x(z+n—2z) "2 x(z4n—y) 234 x &c. |
. ...n::_-LJ( T =) |>
L (x+n—1) T x(a+n—3) 123 x &c. J

If any one shou]d not be satisfied that the form given to
he will find the same form in that case. NO\\ L' (n+ 2) is

into L"+(r+1 in all the terms but the last L.a" (n+l), and
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this we may remember had z first changed into x—1, and
afterwards into z--1, so that it receives no alteration. Finally
there is to be added L. &"-(n+2).

7. Cor. 2. Change z into x—1 in equations (b), and let
the new values of «, &', 2", &c. be 8, 8/, 8", &c., and there
arises the following series of equations,

r—1=(2—2) x 3
r =(x—1)xBxf

T4 1=xx ;—f_—;xﬁ’ x 8"

.1:-]-2::(.1‘-[—1 ) x .t-;-l « (x—1i£x+ 1) x 3% L1
&c. &ec.
which being multiplied by equations (), the first by the
first, the second by the second, and so on, factor by factor,
and putting o x B=s, &’ x B'=s', &""x 8"==s", and so on, give
r=(x—2) xS
r4+1=(x—1) xsx s

—_ x4 1 12 "
T2=L X T X S'% S

1«‘+8=($+1) % x42 % (z+2) (x—1) % s"x s

x (x+1)x
&c. &ec.
which, being put into logarithms, give
L° =L +4L.s
L' =L +L.s+L.s¢ ' (d)

L’ =L°4(L'—L)+4L.s+L.s"
L"=L' 4 (L"—L°)4 (L—L'—L°4L) 4 L.s"4L. s

oooooooooooooooooooooooooooooooo
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Lt e L' (1=3) ) ecssrssr ( L' (1 )L (=)

nX(—3) 1 "....(n— an—1) X (1=5) 1 "....(tme fan
2L (n 2)_____;‘_27__14 (n 3)—|-)-|-L.s "4

+ L.s"-(+1; any immediate term, as the m 4 1%, will be
“of the form Liwt—(m—1)L"n(n—1) f BRIy ) _
m(m—1) x(m——s)+ *

1.2.3
‘We easily see that
Ir (n+1) x(n—2) (n+ Dn(n—1) x (n—06) -}
woooy V@t x(@gn—) 2 X (£ 41—4) 1234 x &c.
L.S "“n—-—L< T ("+l)nx(n—'4-) j
L (.z+n—x)”x(x+n——3) 1.2.3 - % &c.

It is scarcely necessary to say that L. &"-#, L . 5" are to

be expanded by the common series for L. . viz.

* These forms are analogous to an e;:pression in the method of differences, which,
though not noticed by StirrL1nG and other writers on interpolation, may be useful
on many occasions, as the coefficients are small and few in number. BorDpa’s ex-
pression for logarithms is a particular case of it.

nx(n—3) n(n—1) x (n— n(Ne=1) (n—2) X (n—7)
“‘(1‘.73"‘"—2 _L_Tz_g__s)"n_s _n (1.2‘34( Dy,

Fomesnt A"+ Amu_. If we make u, =L.x, we have, by taking # (in the co-
efficients) successively 1, 2, 3, 4, &c.

U =(n—1)u -
' ( 1) n—1

L.x=L (x—2)+ series,
L.2=L (2—1)+L(z—2)~L(z—3)+ series,

L.z=2 { L(x—l)—-L(x—-3)} +L(a—4) + éeries, (Borpa’s if we change x into z+2).

L.x=3 { L(x——l)+L(x-4)} -z { L(z=2)+L(x—3) }—L(x—5)+series,

L. :t=4'-1‘ L(z—1)=—L(z—3) E -5 { L(x—z)—L(x—‘})} + L(x==6) -+ series,

L.ax=3 { L(z=—1)+L(2—3) + L(z—4) +L(x—6) } -—9 { L{z—2)4L(z—3 }-—L(:c——7( +series,

L.x=6 { L{z—1)—L{z~7) }—14{ L{z—2—L(z—3) + L{@—5)=L{z—=06) } + L (x~8) -} series,
&c. &c.

which may be useful, when taken without the series, as formulas of verification.
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—b —b b\s
L-‘%"—"QM{%IFI;‘*' - (:+b) +— (:b) +&ec. }though for the
purpose of the two following propositions, they will be better

when expanded into series of monomials; see Prop. VI.

Pror. IV.

8. To construct a Table of Logarithms by means of z’nterpolatz'on
Jrom the converging expressions L.z, L. o', L. &, &ec.

When treating of the equations marked (¢), we noticed a
law to which the terms are subject ; this law affords an easy
method of eliminating the second, third, &c. terms, and, by
this means, we find, successively,

L.z =L(z—1)4L.«

L(z4+1)=L.2 +L.z4 L.o' (e)

L(z42)=L(z+1)+4L.at2L.oa'+ L.a&"

L(x+3)—L(x+2)+L aa+3L az'+3L ‘+L.a"

L(x+n) L(x—l-n—-l )+L a+nL '+ "("—')L "+
If any one doubts whether this form is general, for every
value of n, let it be only a single value; and supposing z, &,
«', &c. to become &, o, ", &c., by the substitution of z-4-1

for z, we have
L(z+n+1)=L(z4n)+L. atnL, ?'+?!i’;_-';L’L. '+

Now, if we consider the manner in which the last fractional
factors, in the values of z, at the beginning of the last pro-
position, were formed from one another; and the change
which they afterwards underwent in forming equations (b),
we shall easily perceive that ‘
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“”..,.[n-—l) " \ ,
BN [N | Y} "(n--l)
“"....nzm—m; whence L. @ =L.a L.«
o

by means of which equation, L(x4#+1) becomes
L(z4n+1)=L(z+2) 4 L.ad LL. o001 00y
n(n—1) n—2) Loc"'-l-m

1.2.3
+L. a'+ —?-Laa”_l- 7&:_:_1_)1“ :x"l-l—
or Lz 4+n 4 1) =Lz 4 n) + L. ap L o/ E0 g

(i"——:)z(—;flﬂL . &"""4- the same form as before, which is there-

fore general.

9. By means of equations (¢) the logarithm of a number
is found from the logarithm of that which precedes it, and
the process will consist of a number of additions, equal to the
number of the values of = we make use of.

Thus, if L. 2 be so small, as not to affect the last figure,
to which we intend to carry the logarithms, it may be neg-
lected and we must make

L.a+4 L.2 =y

L.a42L.2'4 L o"=r +L.a'4 L." =r!
L.z4gL.o'+gL.a"=r'4La' 2L .2" =r"
L.a44L.o/'46L. a"'=r"4L.a'4gL. a" ="

Lw+ﬂL.x'+ 7%—-1-214.%"::7””'"(""2) + Lo (n—1)Lia/ ==r" e (1—1)
Here the quantities 7/, 7"/, "/, &c. are formed by two addi-
tions each, one more gives the logarithms; for, by substituting
in (e),

L.z  =L(z—1)4L.a

L(z41)=L.z+4+  La+Lo =L.o4r
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L(z42) =L( 241)4r +L.a'4+L.o" =L(x41)4r

L(z43) =L(x+42)+r' +L.a'4-2L. " =L(z42)4r"

L(z44) =L(z+3) +" +L.o'+3L.a" =L(x43)4r"
&ec. &ec. &ec.

If, in the value of L.g".-n (Ai‘t. 6), we put successively o, 1,2

for n, we have

L.a:L(—L); La':L{(f:']‘%fiL))a L‘.a"::L(—(ﬁz)m );~

T—1 (z—1) (x+1)3
or

L.a= QM{ zx:__l+-;'(;;::‘__",)3+*;‘(zx.x_.,)s+}
L. a',=—-zM{n,‘__,+—;—(m,‘__,)3+—55-(-u,—'_;)’+}

L.o"= QM{ zx‘+:;:j-—lzm— 1+%(zx‘+:zj-—lzx—1 )3+ }
‘These are the most converging values, I shall show pre-
" sently how to expand them into series of monomials.

10. If the intended number of decimal places should re-
quire L. "' also to be retained, make, first
L.a+ L.& =r
L.a+d2L.a'4+ L.o" =r .+L.a'+ L.a" ' =’
L.u+3L.a’+3L.‘a"+ L.aa'~"=7"+L.a'+2L.’d"+ L.a" =r"
L.z44L.a'+6L.a"44L.&'""=r"4L.a'4 gL.a" 4+ gL. & =r""

L.a+4nL. u'+’l—(’-:?2 L.o"4 l’&'.'_:l_%%”_:i) L. pe.'"::r'"-'--(”—z) -+
L' (n—1 )L &8O [, o ()
Next make
L.24 qu" ’ =(7;) |
L.a&'42L.2"4 L.o" = 7!‘) +L.a"4L.a" =’

. { ]
L.a'4gL. o'4gL .o = rf +L o'4-2La" =7r"

e
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L. o/(n—1)L . o' 2202022y iy ) Lo
. . (n—e)L.a" = 7 "wn(n—2)
®
If L. 2" had been used, we must have made L. &L . &

= r , and have proceeded as before.
*)
The substitutions above being made equations () become

L.rz=L(z—1)4L.c
(L.Z‘-'—l ):L .Z +sz+Lm' =L. x+r=—-..L . ,1:+,ﬂ'
L(z42)=L (z41)4r +L.o'4L.o" =L(z41)+

r'=L(z41)4r4 7
L)L)+ FLod Lo (za)+
r'"=L(z42)4r'4 7’
L(z+4)=L(2438) +r" +r+L o'+2L. o =L(x+3)+
rIII=L(w+3)+rI’+ rl'
L(x-}-5)=L~(x+4)+r”’-|—(7;)"+L o't gL . & L(x+4,)-|-
=L (et g
&ec. &c.

Where it is plain that each logarithm is found by four addi-

tions 7/, r”, ", &c. being got by two each.
Moo

Pror. V.

11. To construct a Table of Logarithms by means of interpolation
Jfrom the converging expressions L. s, L.s’, L. s”, &c.

If we consider the formation of equations (d), we easily
perceive that the terms of L{xn) observe the same law,
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with respect to those of L(z<4-#—1), which we observed in
equations (¢); we have therefore by a similar elimination,
L.x =L(zx—e2)+L.s
L(x41)=L(z—1)4L.s+4 L.s
L(z42)=L.x +L.s42L . .s'4 L.s"
L(x+3)——L(x+1)+L s+3L s'gL . s L . s

L(x+n) -—-L(.rc+n--2)+L s-{—nL .S +"‘"‘"”L s
which in order that the logarithms may be got from one ano-

ther by addition, must be transformed as in the last propo—
sition by the assumption of p, ¢/, o, &c.s p), ‘; p) , &XC. 3
T
p,) p,) p), " &c.: thus if the case only requires us to uée L(.s, L.s,
& e
and L. s", make
L.s-} L.s'=p
L.s4eL.s'4 L.s" =p+4L.s'4 L.s" =)
L.s4gl.s'¢gL.s" =p4L.s'}2eL.s" ="
&ec. &e. &c.
by substituting which our equations become
L.x =L(x-2) +L.s
L(z41)=L{x—1) +L.s+4 L.s =L(zx—1)p
L{z42)=L.2 4p+4L.s} L.s" =L.x
L{z+43g)=L(x-1)4¢+L.s+42L.s" =L(x41)4p"
&c. &e. ; &e.
If now we put successively o, 1, 2 for n in the value of
L. 5", given in Art. 7, we find

Lot ot S L
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L.s =—2M{x oo 1 +—_:,_(x’—:c—.l )3+-§-(F‘:§r—:}')s+ 8.

Lom {4 e
(BorpA’s Series.)

Pror. VL

12. To expand L. &'n and L. s"n into series of monomials of
the fo_rm =

L(o+n)=L.x+M {-—-—--2-;;- '3%"' ....... i;;+ }

”+’L(x+n-1) "+’L.x+M{_1’il.’L'?1+”+’ e
| S <’L-_—'>'+}

1 0 rar —

(n+l)nL(x+n ) (n+l)nL 1+M{(n+1)n.n~2 (n41)n (n—2)* |

x 1z 2x?

+ S (n+1)n . (”";f)ri

: I
&e. ‘ _ &e.
These added together will give L. «"2. It is easy to see
that L. = will disappear, because its coefficient =(1-—1)"*7;
we have then, putting = to represent the sum of the terms
formed by the different values of r,

Laweet M . §{ +1 —1y+ (n+l)n( —2) »(n+ll?;z.(;z—-l)(n__3),+‘}

rx’

where for r we are to take every whole number from one
upwards ; thus

L.a= M{—'~+-%,+3-i-3+....l ....... ++1
L. “=mM{x’+z;¢* -é-‘l—z-ﬁ-}- &ec. ; }
&ec. &ec.

Hence L. o' equals double the sum of the second, fourth, &c.
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~terms of L. «, with the sign changed. L. s"-# is expanded,
by means of the logarithmic series, in a similar manner.

Pror. VIL
18. To calculate a Table of Logarithmic sines, or cosines.

It is quite evident, that, if, in the fractional products, in
Propositions II, and III, instead of #, #=—1, #—2, &c. we had
used successively cos. x, cos. (@—u), cos. (z——au), &c. or
sin. @, sin. (x—u sin. (#—qu), &c., the reasonings made use
of would have been equally applicable; and that the whole
methods given in Proposition III, IV, V, including the gene-
ral expressions for L. g"#, Ls"#, (but not the expansions
of the said expressions) will hold good here, after we have
‘made the above mentioned substitutions. Thus if it is L. cos.

x which we are calculating, we shall have
cos. cos. (z—u) cos. (x+4u)) , —
L.a=L (cos (.z\-u)) L.d'=L. ( €os* & ) s Lo’ =

cos. (x4 2u) cos3 x
L (cos (x—u) cos. ’(.t+u))

These are the logarithms of numbers converging conti-
nually towards unity, and must be found by the form for

L. (%)



